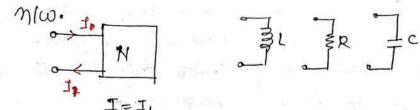


Subject: General Engineering

Unit-4 Network Functions

Syllabus

ALIGARH


Network Functions: Pre- Requisites: Concept of basic circuital law, parallel, series circuits. Concept of complex frequency, Network functions of one port and two port networks, Concept of poles and zeros, Properties of driving point and transfer functions. Two Port Networks Characterization of LTI two port networks; Z, Y,ABCD, g and h parameters, Reciprocity and symmetry, Inter-relationships between the parameters, Inter- connections of two port networks, Ladder and Lattice networks: T & Π representation, terminated two Port networks.

Course Outcome

Demonstrate the concept of complex frequency and analyse the structure and function of one and two port network. Also evaluate and analysis two-port network parameters.

TWO-PORT N/W

- · A pair of terminals through which current may enter & leave a nlos is known as a port.
- Two terminal clewices such as R, L, c vusult in a 1-point

· Current entering 1-terminal of the point deaves from the other so that the net current entering the port is 0.

$$\begin{array}{c|c} I_1 & N \\ \hline V_1 & V_2 \\ \hline V_1 & V_2 \\ \hline I_1 & I_2 \\ \hline I_2 & I_2$$

- A 2-pout new have 2 seperate pouts, we apply the i/p at one pout & get a o/p prior the other. for extransformer.
- · Current entering both the poets is a standard notation in 2-pout n/w.
- In 2-pout nlw, we have 4 vaniables V1, I, for the i/p pour Er V2, 12 for 0/p pour of 2 pour of these i/p pour Er V2, 12 for 0/p pour of 2 pour of these 4 vaniables will be dependent er mest of 2 will be gndependent.
- The new inside the puts is considered as a black box. Et it consist of clinear, biclinectional & passive elements.
- The black box may also consist of energy storage elements like Inductor & Capaciton but their initial conditions must be 0.

The new inside the points may also consist of
Independent source, never an independent source
in it.
Generat of Symmetry in 2-But NLos.
A z-part new is said to be symmetrical if the
natio of excitation to useponse demain the same
at both the pouts independently cost defined ext
vonditions. such as old ext or shour ext.
Note for small Independent nloss, symmetry can also
be Identified as the uninered charge property.
Vs
$$\underbrace{f_1}^{I_1}$$
 $\underbrace{N}_{2}^{I_2=0}$ $\underbrace{V_2}_{I_2}$ $\underbrace{V_3}_{I_2}$ $\underbrace{I_{1=0}}^{I_2}$
Vs $\underbrace{f_1}^{I_1}$ $\underbrace{N}_{2}^{I_2=0}$ $\underbrace{V_3}_{I_2}$ $\underbrace{I_{1=0}}^{I_2}$
Vs $\underbrace{f_2}^{I_1}$ $\underbrace{N}_{2}^{I_2=0}$ $\underbrace{V_3}_{I_2}$ $\underbrace{I_{1=0}}^{I_2}$
Vs $\underbrace{V_1}^{I_2}$ $\underbrace{N}_{2}^{I_2}$ $\underbrace{V_3}_{I_1}$ $\underbrace{I_{1=0}}^{I_2}$
Vs $\underbrace{V_1}^{I_2}$ $\underbrace{N}_{2}^{I_2}$ $\underbrace{V_3}_{I_2}$ $\underbrace{I_{1=0}}^{I_2}$
Vs $\underbrace{V_1}^{I_2}$ $\underbrace{V_2}^{I_2}$ $\underbrace{V_3}_{I_2}$ $\underbrace{I_{1=0}}^{I_2}$
Vs $\underbrace{V_1}^{I_2}$ $\underbrace{V_2}^{I_2}$ $\underbrace{V_3}_{I_2}$ $\underbrace{I_{1=0}}^{I_2}$
 $\underbrace{V_1}^{I_2}$ $\underbrace{V_2}^{I_2}$ $\underbrace{V_3}_{I_2}$ $\underbrace{I_{1=0}}^{I_2}$
 $\underbrace{V_1}^{I_2}$ $\underbrace{V_2}^{I_2}$ $\underbrace{V_3}^{I_2}$ $\underbrace{V_3}_{I_2}$ $\underbrace{I_{1=0}}^{I_2}$
 $\underbrace{V_1}^{I_2}$ $\underbrace{V_2}^{I_2}$ $\underbrace{V_3}^{I_2}$ $\underbrace{V_3}_{I_2}$ $\underbrace{V_3}_{I_$

$$V_{1} = Z_{11}J_{1} + Z_{12}J_{2}$$

$$V_{2} = Z_{21}J_{1} + Z_{22}J_{2}$$

$$\begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix} = \begin{bmatrix} Z_{1} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} J_{1} \\ J_{2} \end{bmatrix}$$

$$\begin{bmatrix} VJ = \begin{bmatrix} Z_{1} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}$$

$$Z_{11} = \begin{bmatrix} V_{1} \\ J_{1} \end{bmatrix} = 0 \quad \text{open ckt dwiving point ilp Impedance.}$$

$$Z_{421} = \begin{bmatrix} V_{2} \\ J_{1} \end{bmatrix} = 0 \quad \text{open ckt dwiving point ilp Impedance}$$

$$Z_{421} = \begin{bmatrix} V_{1} \\ J_{2} \end{bmatrix} = 0 \quad \text{open ckt dwiving point of p Impedance}$$

$$Z_{422} = \begin{bmatrix} V_{1} \\ J_{2} \end{bmatrix} = 0 \quad \text{open ckt dwiving point of p Impedance}$$

$$Z_{422} = \begin{bmatrix} V_{1} \\ J_{2} \end{bmatrix} = 0 \quad \text{open ckt dwiving point of p Impedance}$$

$$V_{1} \quad \int_{J_{2}} J_{1} = 0 \quad \text{open ckt dwiving point of p Impedance}$$

$$V_{1} \quad \int_{J_{2}} J_{1} = 0 \quad \text{open ckt dwiving point of p Impedance}$$

$$V_{1} \quad \int_{J_{2}} J_{2} = V_{2} \quad \int_{J_{1}} J_{1} = 0 \quad \text{open ckt dwiving point of p Impedance}$$

www.universityacademy.in Page 134 of 193

Y-Remameters / Admittance Remameters / Shout-chit Brometers

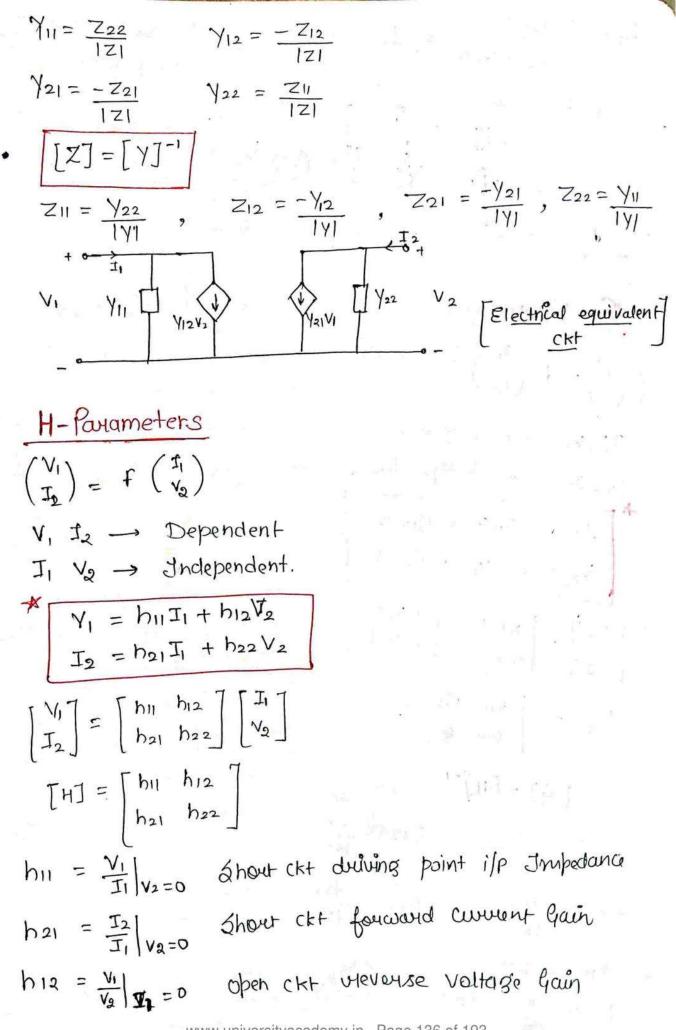
$$\begin{pmatrix} I_{1} \\ I_{2} \end{pmatrix} = f \begin{pmatrix} V_{1} \\ V_{2} \end{pmatrix}$$
II IZ - Dependent
VI VI - Jindependent.
TI = VIIVI + Y12V2
IZ = Y21VI + Y22V2

$$\begin{bmatrix} I_{1} \\ T_{2} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$$

$$\begin{bmatrix} I_{1} \\ T_{2} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$$

$$\begin{bmatrix} I_{1} \\ T_{2} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$$

$$\begin{bmatrix} I_{1} \\ T_{2} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$$


$$\begin{bmatrix} I_{1} \\ T_{2} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$$

$$Y_{11} = \frac{I_{1}}{V_{1}} \Big|_{V_{2}=0} \neq \frac{I_{1}}{Z_{11}}$$

$$Y_{21} = \frac{I_{2}}{V_{1}} \Big|_{V_{2}=0} \qquad \text{Shout chi with duwing point is partial production of the second transfer admittance
$$Y_{12} = \frac{I_{2}}{V_{2}} \Big|_{V_{1}=0} \qquad \text{Shout chi suburge transfer admittance}$$

$$Y_{22} = \frac{I_{2}}{V_{2}} \Big|_{V_{2}=0} \qquad \text{Shout chi suburge point of admittance}$$

$$\begin{bmatrix} I_{1} \\ I_{2} \end{bmatrix} = \begin{bmatrix} I_{2} \end{bmatrix} \begin{bmatrix} I_{1} \\ I_{2} \end{bmatrix} \begin{bmatrix} I_{2} \\ I_{2} \end{bmatrix} \begin{bmatrix} I_{2$$$$

www.universityacademy.in Page 136 of 193

$$h_{22} = \frac{T_{2}}{V_{2}} \Big|_{T_{1}=0} = \frac{1}{|||_{T_{2}}} = \frac{1}{|||_{T_{2}}} open CH obsing part.$$

$$h_{11} = \frac{1}{|||_{T_{1}}} open CH obsing part.$$

$$H_{11} = \frac{1}{|||_{T_{1}}} open CH obsing part.$$

$$H_{11} = \frac{1}{|||_{T_{1}}} open CH obsing p$$

$$\begin{bmatrix} z J = \begin{bmatrix} 4 & 4 & J \\ 4 & 10 \end{bmatrix}$$

(2) $\forall : [z Y J = [z J^{-1}]
$$\begin{bmatrix} Y J = \frac{1}{44} \begin{bmatrix} 10 & -4 \\ -4 & 6 \end{bmatrix}$$

$$\begin{bmatrix} Y J = \begin{bmatrix} \frac{5}{888} & -\frac{1}{11} \\ -\frac{1}{11} & \frac{3}{828} \end{bmatrix}$$

(3) $\underline{H} : V_{12} = \sqrt{11} + V_{21}$

$$\begin{bmatrix} J_{22} = -0.4I_{1} + 0.1V_{2} - (3) \\ T_{22} = h_{21}T_{1} + h_{22}V_{2}$$

(3) (0) $T_{2} = -0.4I_{1} + 0.1V_{2} - (3) \\ T_{2} = h_{21}T_{1} + h_{22}V_{2}$
(3) (1) $T_{2} = h_{21}T_{1} + h_{22}V_{2}$
(3) (1) $T_{2} = h_{21}T_{1} + h_{22}V_{2}$
(3) (3) (4) $T_{1} = 0.4I_{1} + 0.4V_{2} - (9) \\ V_{1} = h_{11}T_{1} + h_{12}V_{2}$

$$\begin{bmatrix} H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

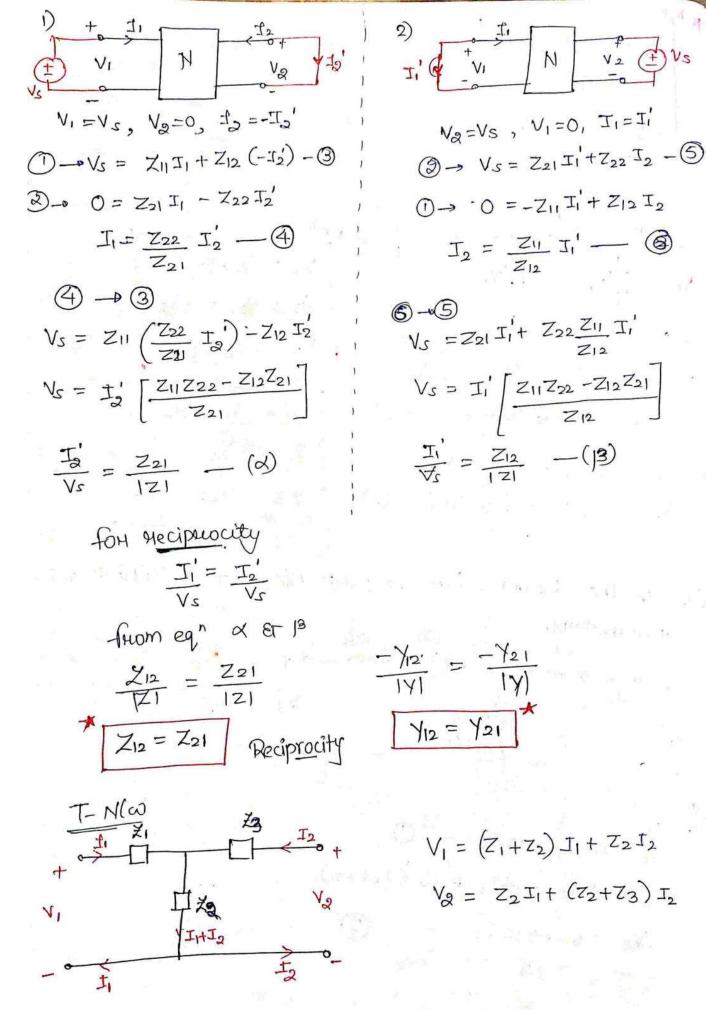
$$\begin{bmatrix} U H J = \begin{bmatrix} 0.44 & 0.44 \\ -0.44 & 0.44 \end{bmatrix}$$

$$\begin{bmatrix} U H J = U H$$$

.

www.universityacademy.in Page 140 of 193

Condition for Symmetry in 2-But NIW:


$$V_1 = Z_{11}I_1 + Z_{12}I_2 - 0$$

 $V_q = Z_{21}I_1 + Z_{22}I_2 - 0$
 $V_q = Z_{21}I_1 + Z_{22}I_2 - 0$
 $V_s = Z_{11}I_1 + Z_{12}C_0$
 $V_1 = V_s, J_2 = 0$
 $V_s = Z_{11}I_1 + Z_{12}C_0$
 $V_s = Z_{11}I_1 + Z_{12}C_0$
 $V_s = Z_{11}I_1 + Z_{12}C_0$
 $V_s = Z_{12}I_1 - C_0$
 $V_s = Z_{22} - C_1^{(2)}$
for symmetry,
 $V_s = \frac{V_s}{T_1} = \frac{V_s}{T_2} = Z_{22} - C_1^{(2)}$
for symmetry,
 $V_s = \frac{V_s}{T_1} = Z_{12}$ Symmetry.
 $\frac{V_{22}}{T_1} = \frac{V_1}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{22}}{T_1} = \frac{V_{11}}{T_1} = \frac{V_{11}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{22}}{T_1} = \frac{V_{11}}{T_1} = \frac{V_{12}}{T_2} = \frac{V_{12}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{12}}{T_1} = \frac{V_{12}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{12}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{12}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_1} = 0$
from eqn $c \in P$.
 $\frac{V_{13}}{T_1} = \frac{V_{13}}{T_2} = \frac{V_{13}}{T_$

$$V_1 = Z_{11}J_1 + Z_{12}J_2 - (1)$$

$$V_2 = Z_{21}J_1 + Z_{22}J_2 - (2)$$

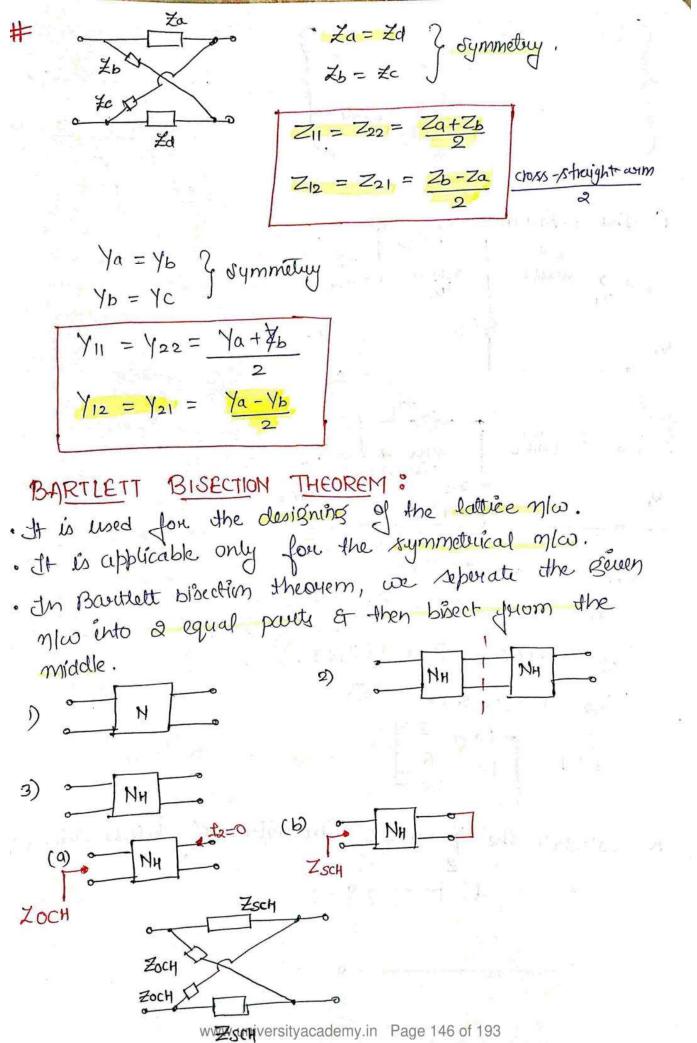
www.universityacademy.in Page 141 of 193

R

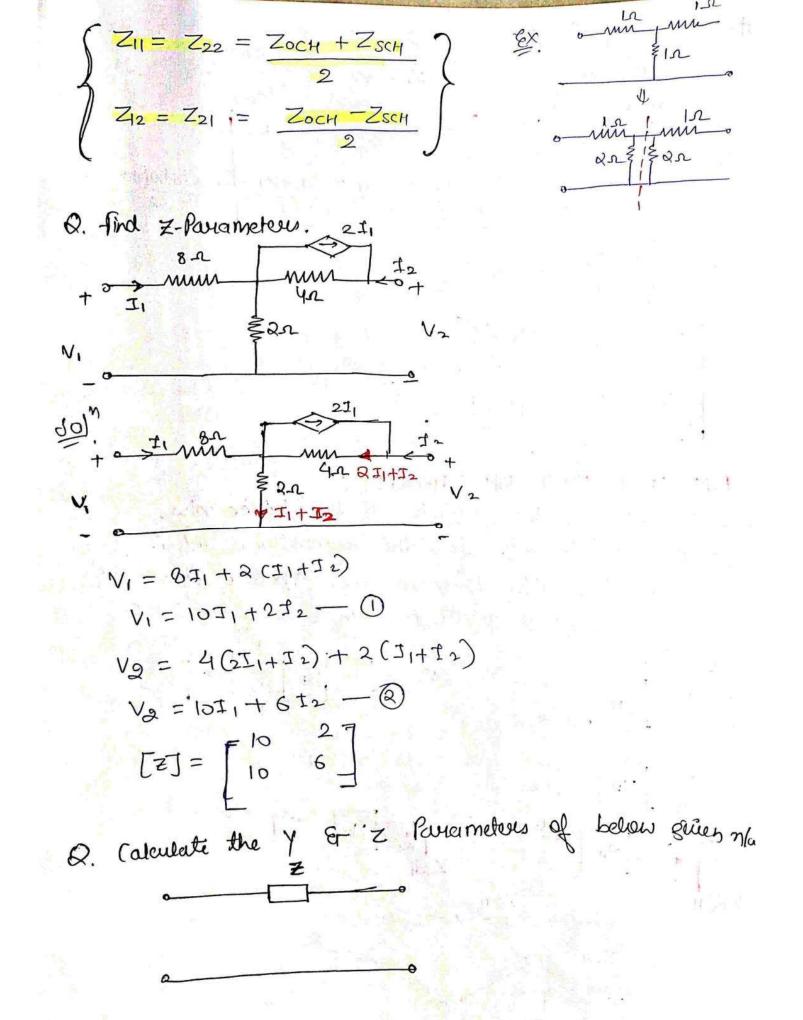
www.universityacademy.in Page 142 of 193

V2 (+

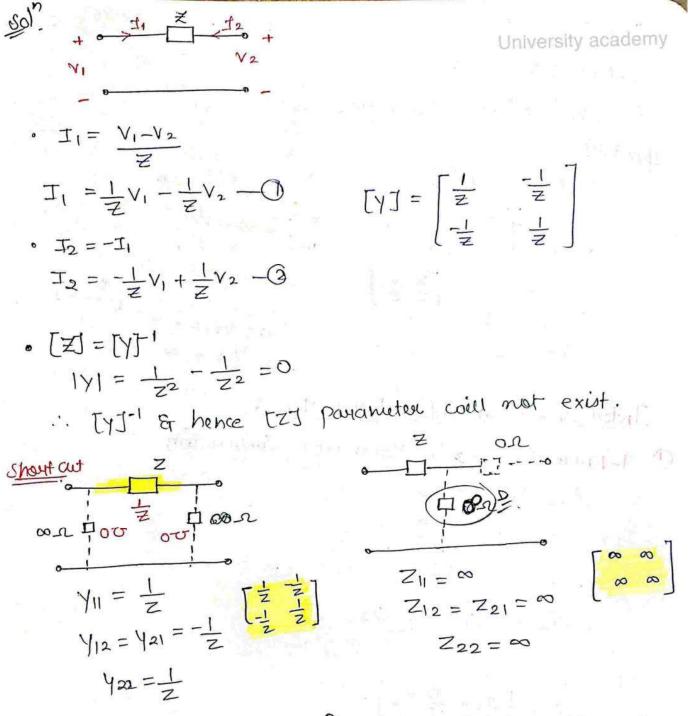
Vs

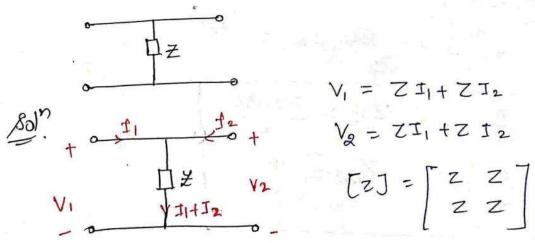

N

121 1V1


$\frac{2}{2} \frac{1}{2} = [2]'$	States Lates
$\begin{bmatrix} Z \end{bmatrix} = \begin{bmatrix} 13 & 10 \\ 6 & 12 \end{bmatrix} \implies \begin{bmatrix} Z \end{bmatrix} = \begin{bmatrix} 13 \times 1 \\ 12 \end{bmatrix}$	2-60 = 96
$Y_{11} = \frac{+12}{96}$ $Y_{12} = \frac{-10}{96}$ Y_{21}	$= \frac{1}{96}$ $\frac{1}{22} = \frac{13}{96}$
37旦 12ゴ2 = - GI1+V2	
$I_2 = -\frac{1}{12}I_1 + \frac{1}{12}V_2 - 3$	-1
$V_{1} = 13J_{1} + 10\left[\frac{-1}{2}J_{1} + \frac{1}{12}V_{2}\right]$	
$V_1 = 8I_1 + \frac{2}{5}V_2 - 4$	
$[H] = \begin{bmatrix} 8 & 5/6 \\ -\frac{1}{2} & \frac{1}{12} \end{bmatrix}$	
$\frac{4}{2} = \frac{1}{2} = \frac{1}$	= 1.3 + 0.4 = 1.71
$b_{11} = \frac{-B}{1.71} \qquad b_{12} = \frac{5}{6 \times 1.71} \qquad b_{23}$	$h_{1} = -\frac{1}{2 \times 1.71}$, $h_{22} = -\frac{1}{12 \times 1}$
	N.
5) \underline{I} . (a) - $6J_1 = V_2 - 12J_2$ $J_1 = \frac{1}{6}V_2 - 2J_2 - 5$	
(3) - (1) $V_1 = 13 \left[\frac{1}{6} V_2 - 2I_2 \right] + 10 I_2$	
$V_1 = \frac{13}{6} V_2 - 16 I_2 - 6$	
$ETJ = \begin{bmatrix} \frac{13}{6} & 16 \\ \frac{1}{2} & 2 \end{bmatrix}$	
[= 2]	Altal V
www.universitvacademv.in Pag	e 144 of 193

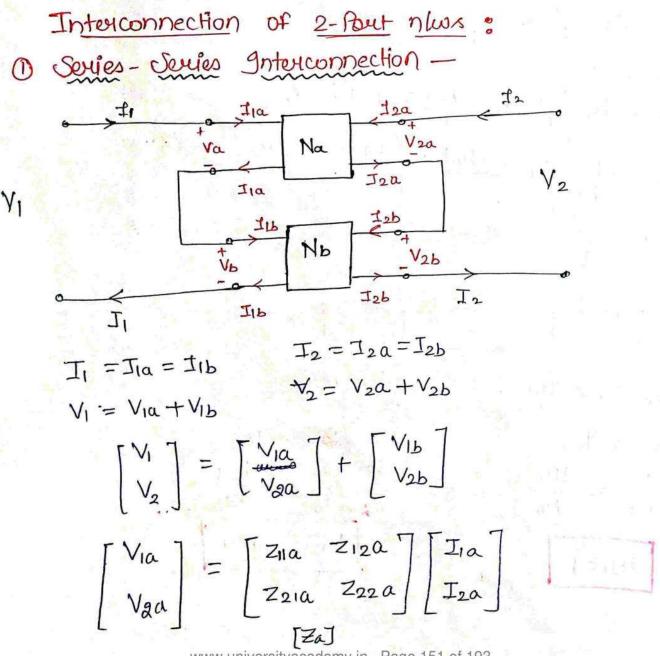
www.universityacademy.in Page 144 of 193


www.universityacademy.in Page 145 of 193


Sec. C. Marca & Marca

www.universityacademy.in Page 147 of 193

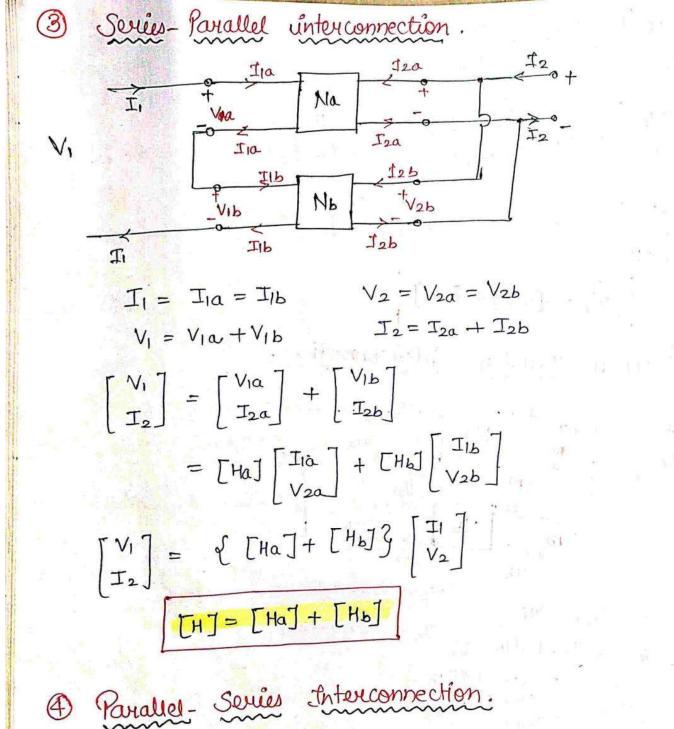
Q. Calculate the Z & y Parameters of below griven nlw.



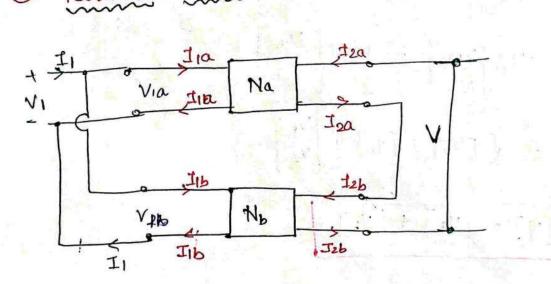
www.universityacademy.in Page 148 of 193

$$\begin{bmatrix} YJ = [Z]^{-1} \\ |Z| = Z^{2} - Z^{3} = 0 \\ \therefore \begin{bmatrix} Z^{-1} J \in \prod_{i=1}^{N} \begin{bmatrix} Y_{i} \end{bmatrix} \text{ Revanuetors cold not exit.} \\ \text{Montul} \\ \downarrow & \downarrow & \downarrow_{i=1}^{n} \begin{bmatrix} Z & Z \\ Z & Z \end{bmatrix} \\ Z_{11} = Z & \begin{bmatrix} Z & Z \\ Z & Z \end{bmatrix} \\ Z_{12} = Z_{21} = Z \\ Z_{22} = Z \\ Y_{11} = Y_{11} = \infty \\ Y_{12} = Y_{11} = -\infty \\ Y_{12} = Z_{11} = Z \\ Y_{12} = Z_{11} = -\infty \\ Y_{12} = Z_{11} = -\infty \\ Y_{12} = Z_{11} = -\infty \\ Y_{12} = -\infty \\ Y_{11} = -\infty \\ Y_{12} = -\infty \\$$

www.universityacademy.in Page 149 of 193


Symmetry Reciprocity
)
$$Z_{11} = Z_{22}$$

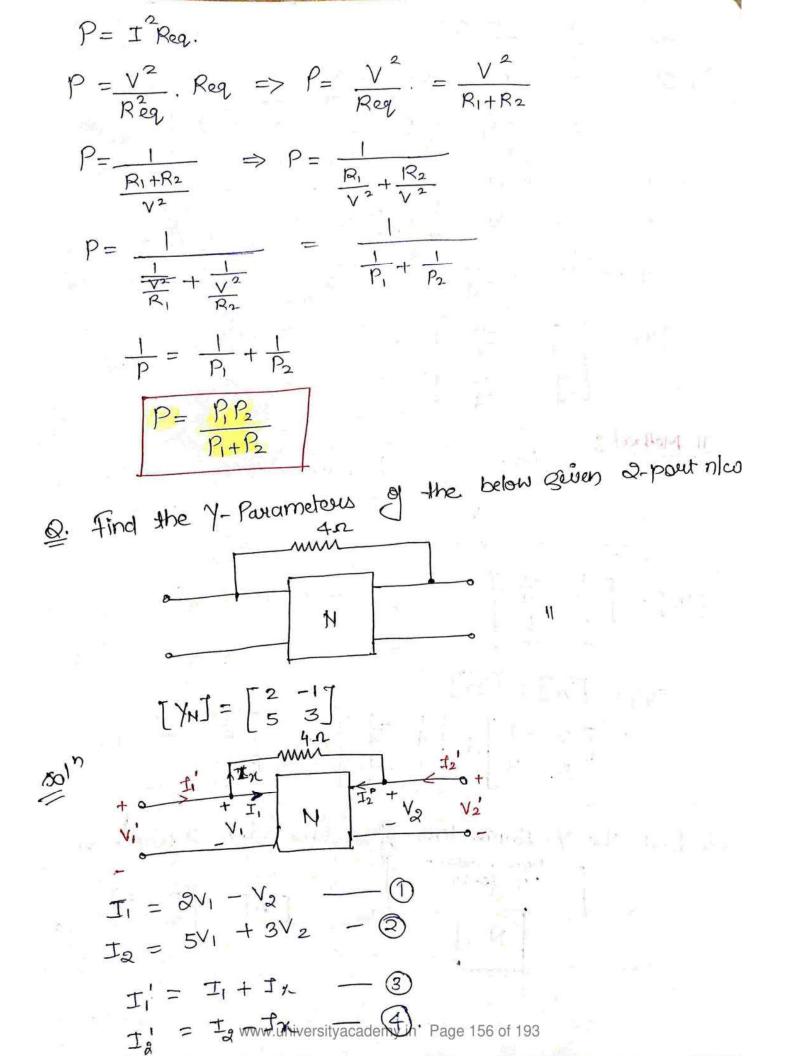
 $Y_{11} = Y_{22}$
Sim [H] = 1
 $I_{G1} = 1$
 $Z_{12} = Z_{21}$
 $Y_{12} = Y_{21}$
 $Y_{12} = Y_{21}$
 $Y_{12} = Y_{21}$
 $Y_{12} = -h_{21}$
 $I_{G1} = 1$
 $g_{12} = -g_{21}$
 $AD - BC = 1$
 $ITI = 1$
 $ITI = 1$
 $ITI = 1$
 $AD - BC = 1$
 $ITI = 1$
 IT



www.universityacademy.in Page 151 of 193

$$\begin{bmatrix} V_{1b} \\ V_{2b} \end{bmatrix} = \begin{bmatrix} z_{b} \end{bmatrix} \begin{bmatrix} T_{1b} \\ T_{2a} \end{bmatrix} + \begin{bmatrix} z_{b} \end{bmatrix} \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix}$$
$$\begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix} = \begin{bmatrix} z_{a} \end{bmatrix} \begin{bmatrix} T_{1a} \\ T_{2a} \end{bmatrix} + \begin{bmatrix} z_{b} \end{bmatrix} \begin{bmatrix} T_{1} \\ T_{2} \end{bmatrix}$$
$$\begin{bmatrix} V_{1} \\ V_{2a} \end{bmatrix} = \begin{pmatrix} z_{a} \end{bmatrix} + \begin{bmatrix} z_{b} \end{bmatrix} \begin{pmatrix} T_{1} \\ T_{2} \end{bmatrix}$$
$$\begin{bmatrix} z_{2} \end{bmatrix} = \begin{bmatrix} z_{a} \end{bmatrix} + \begin{bmatrix} z_{b} \end{bmatrix} \end{pmatrix}$$
$$\begin{bmatrix} z_{2} \end{bmatrix} = \begin{bmatrix} z_{a} \end{bmatrix} + \begin{bmatrix} z_{b} \end{bmatrix} \end{bmatrix}$$
$$\begin{bmatrix} z_{2} \end{bmatrix} = \begin{bmatrix} z_{a} \end{bmatrix} + \begin{bmatrix} z_{b} \end{bmatrix} \end{bmatrix}$$
$$\begin{bmatrix} z_{2} \end{bmatrix} = \begin{bmatrix} z_{a} \end{bmatrix} + \begin{bmatrix} z_{b} \end{bmatrix} \end{bmatrix}$$
$$\begin{bmatrix} z_{2} \end{bmatrix} = \begin{bmatrix} z_{a} \end{bmatrix} + \begin{bmatrix} z_{b} \end{bmatrix}$$
$$\begin{bmatrix} z_{2} \end{bmatrix} = \begin{bmatrix} z_{a} \end{bmatrix} + \begin{bmatrix} z_{b} \end{bmatrix} \\ \begin{bmatrix} T_{1} \\ T_{2} \end{bmatrix} = \begin{bmatrix} T_{1a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix} \\ V_{1} = V_{1a} = V_{1b} \\ V_{2a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix} \\ = \begin{bmatrix} T_{1a} \end{bmatrix} \begin{bmatrix} T_{1a} \\ T_{2a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix} \\ = \begin{bmatrix} T_{1a} \end{bmatrix} \begin{bmatrix} V_{1a} \\ V_{2a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix} \\ = \begin{bmatrix} T_{1a} \end{bmatrix} \begin{bmatrix} V_{1a} \\ V_{2a} \end{bmatrix} + \begin{bmatrix} V_{1b} \end{bmatrix} \begin{pmatrix} V_{1b} \\ V_{2b} \end{bmatrix} \\ \begin{bmatrix} T_{1} \\ T_{2} \end{bmatrix} = \begin{bmatrix} T_{1a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix} \\ = \begin{bmatrix} T_{1a} \end{bmatrix} \begin{bmatrix} V_{1a} \\ V_{2a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix} \\ \begin{bmatrix} T_{1} \\ T_{2} \end{bmatrix} = \begin{bmatrix} T_{1a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix} \\ = \begin{bmatrix} T_{1a} \end{bmatrix} \begin{bmatrix} V_{1a} \\ V_{2a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix} \\ \begin{bmatrix} T_{1} \\ T_{2} \end{bmatrix} = \begin{bmatrix} T_{1a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix} \\ = \begin{bmatrix} T_{1a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix} \\ = \begin{bmatrix} T_{1a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ T_{2b} \end{bmatrix} \\ \end{bmatrix}$$

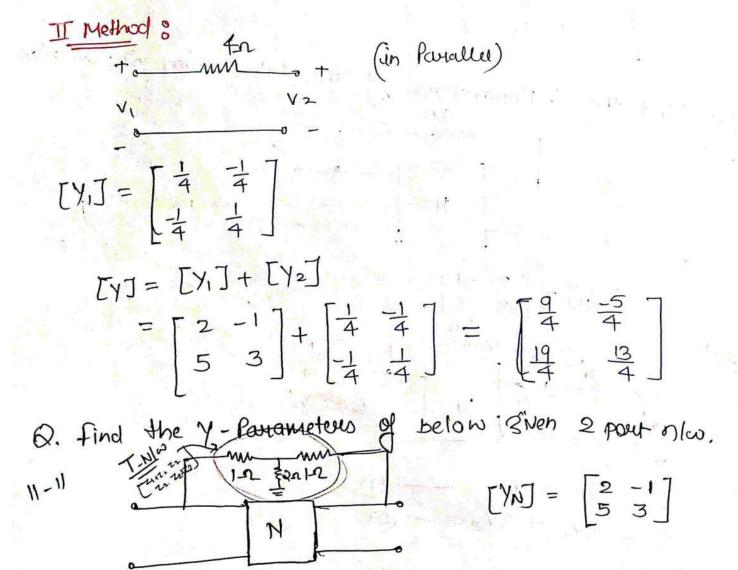
www.universityacademy.in Page 152 of 193



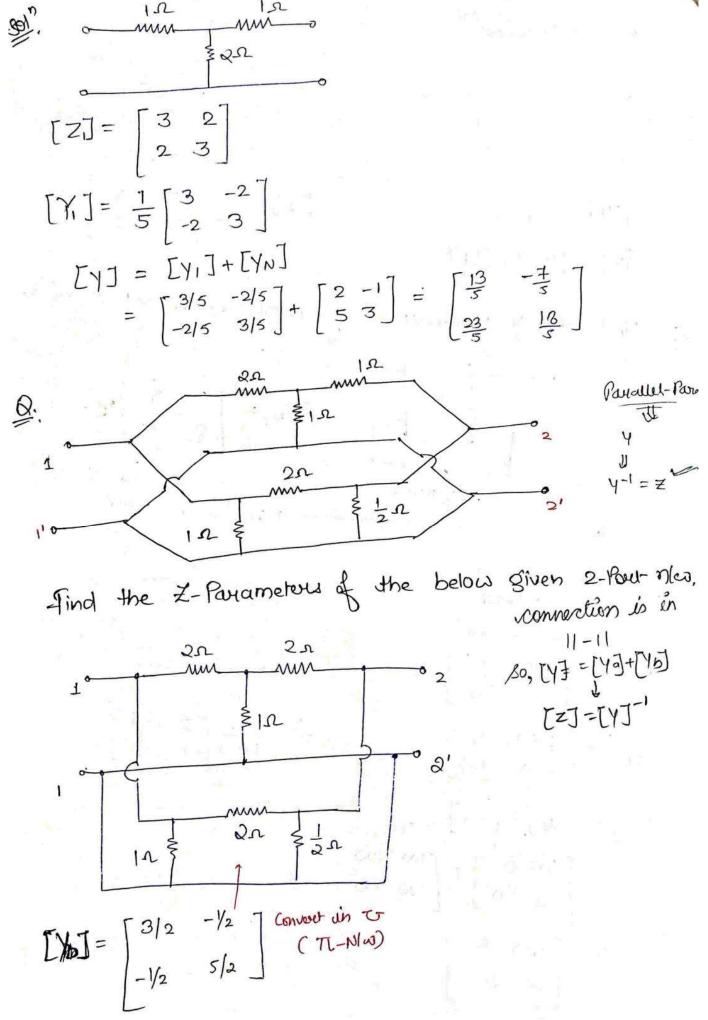
$$\begin{array}{ll} V_{1} = V_{1a} = V_{1b} & T_{2} = f_{2a} = f_{2b} \\ I_{1} = I_{1a} + I_{1b} & V_{2} = V_{2a} + V_{2b} \\ \begin{bmatrix} T_{1} \\ Y_{2} \end{bmatrix} = \begin{bmatrix} T_{1a} \\ V_{2a} \end{bmatrix} + \begin{bmatrix} T_{1b} \\ V_{2b} \end{bmatrix} \\ = \begin{bmatrix} C_{1a} \end{bmatrix} \begin{bmatrix} V_{1a} \\ T_{1a} \end{bmatrix} + \begin{bmatrix} G_{1b} \end{bmatrix} \begin{bmatrix} V_{2b} \\ T_{2b} \end{bmatrix} \\ \begin{bmatrix} T_{1} \\ V_{2} \end{bmatrix} = e_{1}^{2} \begin{bmatrix} G_{1a} \end{bmatrix} + \begin{bmatrix} G_{1b} \end{bmatrix} \begin{bmatrix} V_{1} \\ T_{2} \end{bmatrix} \\ \begin{bmatrix} T_{1} \end{bmatrix} = \begin{bmatrix} G_{1a} \end{bmatrix} + \begin{bmatrix} G_{1b} \end{bmatrix} \begin{bmatrix} V_{1} \\ T_{2} \end{bmatrix} \\ \begin{bmatrix} T_{2} \end{bmatrix} = \begin{bmatrix} G_{1a} \end{bmatrix} + \begin{bmatrix} G_{1b} \end{bmatrix} \begin{bmatrix} V_{1} \\ T_{2} \end{bmatrix} \\ \begin{bmatrix} T_{2} \end{bmatrix} = \begin{bmatrix} G_{1a} \end{bmatrix} + \begin{bmatrix} G_{2b} \end{bmatrix} \\ \begin{bmatrix} T_{2b} \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} T_{2b} \end{bmatrix} \\ \begin{bmatrix} T_{2b} \end{bmatrix} \\ \begin{bmatrix} T_{2b} \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} T_{2b} \end{bmatrix} \\ \begin{bmatrix} T_{2b}$$

www.universityacademy.in Page 154 of 193

www.universityacademy.in Page 155 of 193

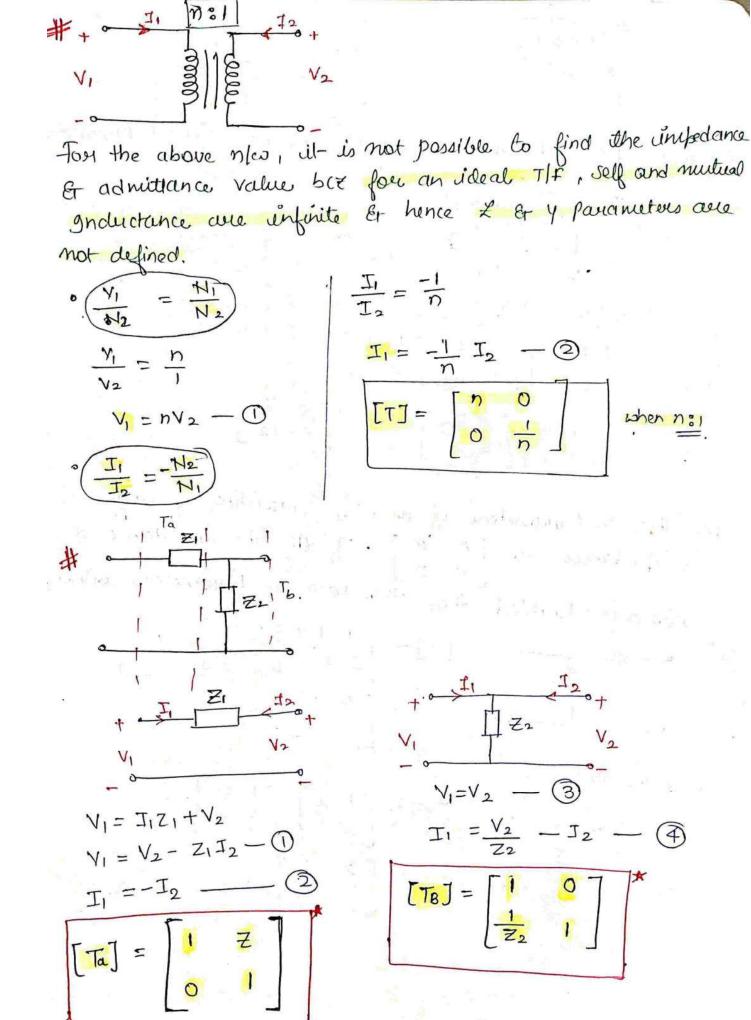


$$J_{x} = \frac{V_{1} - V_{2}}{4} - (5)$$


$$0_{x} (5) \longrightarrow (3) \quad J_{1}' = 2V_{1} - V_{2} + \frac{V_{1}}{4} - \frac{V_{2}}{4}$$

$$I_{1}' = q_{1}V_{1}' - \frac{5}{4}V_{2}' - (6)$$

$$(3) & (3) \quad (4) \quad (4) \quad (4) \quad (5) \quad (5) \quad (6) \quad ($$



www.universityacademy.in Page 157 of 193

www.universityacademy.in Page 158 of 193

$$\begin{bmatrix} 2n & 1n \\ \vdots & n \\ \vdots & n \\ \vdots & n \\ \vdots & \vdots & n \\$$

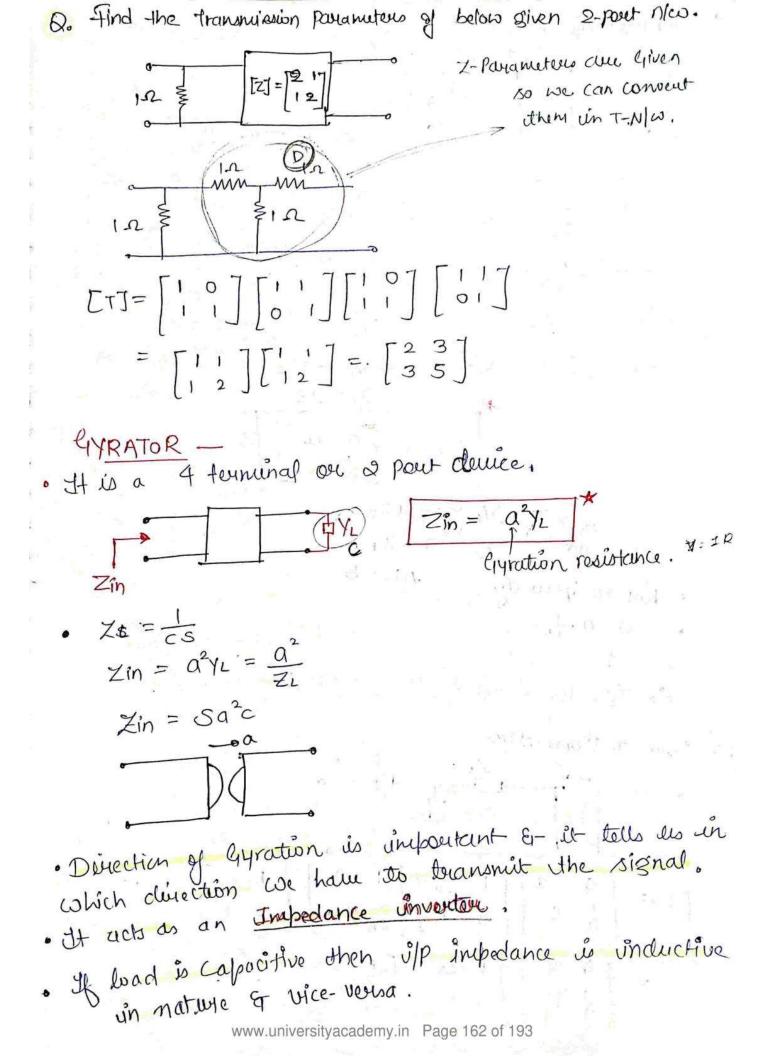
ww.universityacademy.in Page 160 of 193

$$\begin{bmatrix} TJ = \begin{bmatrix} TaJ & \begin{bmatrix} TbJ \\ z \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{z^{2}} & 0 \end{bmatrix} = \begin{bmatrix} 1 + \frac{7}{2z} & 2i \\ \frac{1}{z^{2}} & 1 \end{bmatrix}$$

0. find the T-Ratanutus of the below Quent T-Rationalogies

$$\begin{bmatrix} TJ = \begin{bmatrix} TaJ & \begin{bmatrix} TbJ & \begin{bmatrix} TaJ \\ 2 & 3 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}$$

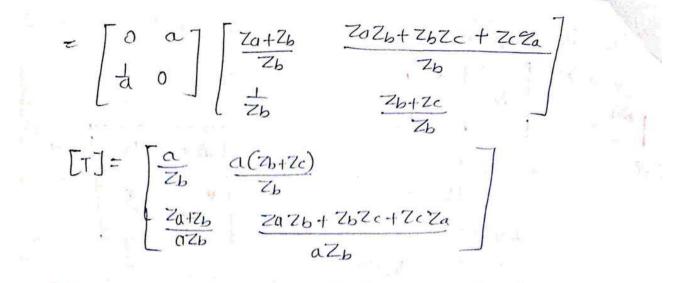
0. the T-Ratanutus of a n/co consisting of only
unupedances are $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot th the impedances of$
mice doubled then the new T-Ratanetrus cult be;


$$\begin{bmatrix} TJ = \begin{bmatrix} TaJ & TbJ & TcJ \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 5 \end{bmatrix}$$

New double of:

$$\begin{bmatrix} TTJ = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 \end{bmatrix}$$

A B D -0 same


$$\begin{bmatrix} D & -0 \\ D & -0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 &$$

a start of the sta

-

Gyraton is made up of op-amp & RL element Mr. A de te Valitze + 0 71 9 8 3- $\frac{V_1}{J_1} = \frac{Q}{V_2}$ Zin = ayL $Z_{in} = \frac{\alpha^{2}}{7} - 0$ $\frac{N_1}{T_1} = \frac{q^2(-T_2)}{V_2}$ $Zin = \frac{V_1}{T_1} - 2$ $\frac{V_1}{T_1} = -\alpha T_2$ $V_{g} = -I_{2}ZL$ $Z_{L} \doteq \frac{V_{2}}{-T_{a}} - 3$ $V_1 = - \alpha I_2$ $I_1 = \frac{V_2}{Q}$ $[T] = \begin{bmatrix} 0 & a \\ \frac{1}{a} & 0 \end{bmatrix}$ -trick ID $V_1 = -a T_2$ alower $V_2 = +a T_1$ · for reciprocity -> AD-BC = 0-0.2 -1 . Gyrator is non-reciperocal device. Q. Find T- l'avameter. Zc DZ6 $\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix} \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & Za \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & Za \\ -1 & 2b \end{bmatrix} \begin{bmatrix} 1 & Zc \\ -1 & 2b \end{bmatrix} \begin{bmatrix} 1 & Zc \\ -1 & 2b \end{bmatrix}$ w.universityacademy.in Page 163 of 193

Open-ckt & Shout-ckt Angledances in terms of ABCD parameters:

 $V_1 = AV_2 - BI_2 - \bigcirc$ $J_1 = CV_2 - DI_2 - \bigodot$

(1) Open-ckt input Jhupedances.

$$+ \circ \rightarrow \frac{1}{1}$$

 $V_{1} \rightarrow \frac{1}{2} = 0$
 $V_{2} \rightarrow \frac{1}{2} = 0$
 $V_{2} \rightarrow \frac{1}{2} = 0$
 $Z_{0} \circ \rightarrow \frac{1}{2} = 0$

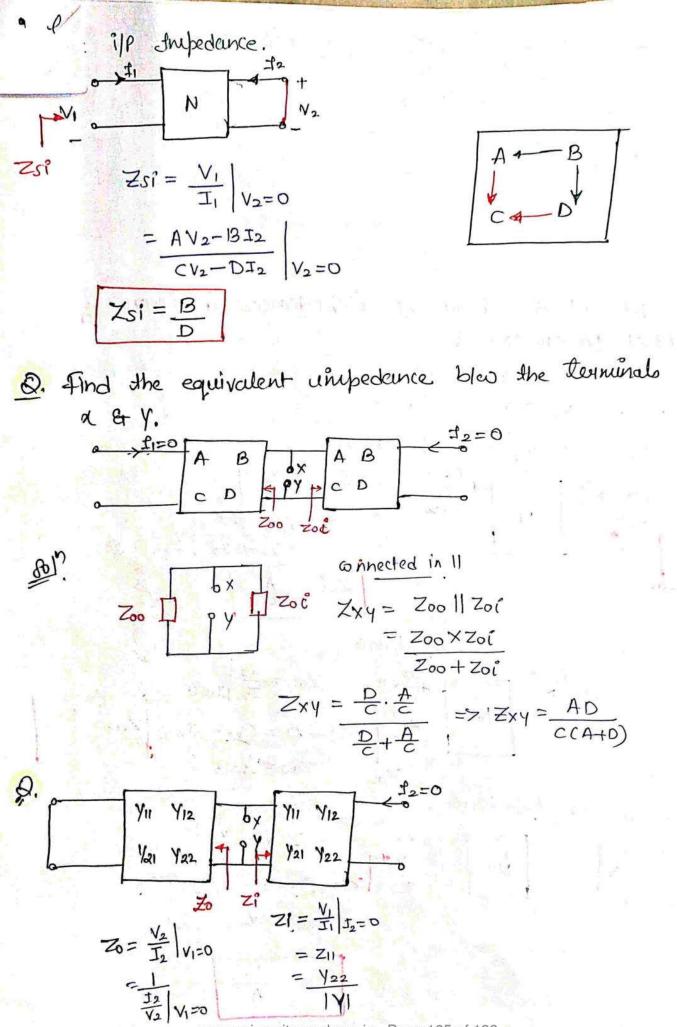
(a) Sic olp Impedance.

$$V_{1} = 0$$

$$V_{1} = 0$$

$$V_{1} = 0$$

$$V_{2} = 0$$


$$Z_{00} = CV_{2} - DI_{2}$$

$$Z_{00} = \frac{V_{2}}{T_{2}} = \frac{D}{C}$$
(b) Sic olp Impedance.

$$V_{1} = \frac{V_{1}}{V_{1}} = \frac{V_{2}}{V_{1}} = 0$$

$$Z_{00} = \frac{V_{2}}{T_{2}} = \frac{D}{C}$$

www.universityacademy.in Page 164 of 193

www.universityacademy.in Page 165 of 193

= 1/20